116 research outputs found

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    New error measures and methods for realizing protein graphs from distance data

    Full text link
    The interval Distance Geometry Problem (iDGP) consists in finding a realization in RK\mathbb{R}^K of a simple undirected graph G=(V,E)G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. In this paper, we focus on the application to the conformation of proteins in space, which is a basic step in determining protein function: given interval estimations of some of the inter-atomic distances, find their shape. Among different families of methods for accomplishing this task, we look at mathematical programming based methods, which are well suited for dealing with intervals. The basic question we want to answer is: what is the best such method for the problem? The most meaningful error measure for evaluating solution quality is the coordinate root mean square deviation. We first introduce a new error measure which addresses a particular feature of protein backbones, i.e. many partial reflections also yield acceptable backbones. We then present a set of new and existing quadratic and semidefinite programming formulations of this problem, and a set of new and existing methods for solving these formulations. Finally, we perform a computational evaluation of all the feasible solver++formulation combinations according to new and existing error measures, finding that the best methodology is a new heuristic method based on multiplicative weights updates

    Realizing Euclidean distance matrices by sphere intersection

    Get PDF
    International audienceThis paper presents the theoretical properties of an algorithm to find a realization of a (full) n Ă— n Euclidean distance matrix in the smallest possible embedding dimension. Our algorithm performs linearly in n, and quadratically in the minimum embedding dimension, which is an improvement w.r.t. other algorithms

    Cycle-based formulations in Distance Geometry

    Full text link
    The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision variables that determine the position of the vertices in the given Euclidean space. Solution algorithms are generally constructed using local or global nonlinear optimization techniques. We present a new modelling technique for this problem where, instead of deciding vertex positions, formulations decide the length of the segments representing the edges in each cycle in the graph, projected in every dimension. We propose an exact formulation and a relaxation based on a Eulerian cycle. We then compare computational results from protein conformation instances obtained with stochastic global optimization techniques on the new cycle-based formulation and on the existing edge-based formulation. While edge-based formulations take less time to reach termination, cycle-based formulations are generally better on solution quality measures

    A Quantum Approach to the Discretizable Molecular Distance Geometry Problem

    Full text link
    The Discretizable Molecular Distance Geometry Problem (DMDGP) aims to determine the three-dimensional protein structure using distance information from nuclear magnetic resonance experiments. The DMDGP has a finite number of candidate solutions and can be solved by combinatorial methods. We describe a quantum approach to the DMDGP by using Grover's algorithm with an appropriate oracle function, which is more efficient than classical methods that use brute force. We show computational results by implementing our scheme on IBM quantum computers with a small number of noisy qubits.Comment: 17 page
    • …
    corecore